How the ASR XL Acetabular System is Constructed
In a previous article we wrote on bone deterioration, we discussed how the bones of your hip are constructed and how a hip implant strives to mimic the qualities so that you can maintain a normal range of movement and a fairly active life. In this article, we'd like to show you how the ASR XL Acetabular System was constructed - and why it fell so short of what hip implant patients needed to give them back their previous quality of life. What a Hip Implant is Up Against Any hip implant is going head-to-head against the natural construction of your body, which is no easy feat. What we think of as our hip is actually two bones: the acetabulum (also called the hip socket) and the femoral head, which is the rounded top of your femur (the main bone that runs the length of your thigh).
As you can see, the two bones of your hip are actually attached to each other securely by two ligaments. The shorter ligament at the center of the femur head is the transverse acetabular ligament, while the longer ligament that runs from the ilium down to the femur itself is the iliofemoral ligament. These ligaments, along with the cartilage surrounding the hip joint, are the reason your hip doesn't dislocate on a regular basis. The iliofemoral ligament in particular is extraordinarily strong - in fact, the strongest ligament in the human body - and when you are standing or sitting, this ligament flexes or releases to allow a range of movement without letting the hip move out of the socket. For its part, the transverse acetabular ligament and the surrounding cartilage make up the acetabular labrum, whose purpose is to deepen the hip socket so that the head of the femur can't slip out. The deeper the hip socket, the more secure the femur bone becomes and the less likely your hip will dislocate. When your natural hip is removed to make way for a hip implant, neither of those ligaments is in place, and the cushion of cartilage is removed to make way for an artificial replacement. Removing the labrum means that your hip is 92% more likely to suffer contact stresses and 40% more likely to allow the femur and acetabulum to touch. As you can see, your hip is a sophisticated and well-constructed mechanism, and it is extremely difficult to create a man-made replacement for it. Let's take a look at some of the best attempts available in the form of conventional hip replacement and total hip replacement systems, including the ASR Acetabular System. Conventional Hip Replacement (also called Conventional Hip Arthroplasty) In a conventional hip replacement, the acetabulum is resurfaced with a new socket, replacing the ring of cartilage as pictured above with an artificial cup made of plastic, ceramic, or metal. The head of the femur is then removed and replaced with a long stem capped with a ball meant to mimic the femur head, as shown below:
In the conventional hip replacement, the plastic cup above is meant to act as the bearing surface, which means that it is the location where the ball and socket contact each other. The liner cushions the point of contact, but it also makes the socket more shallow, which can mean less range of movement and a higher likelihood of dislocation. The creators of the total hip replacement system hoped to eliminate the problems associated with conventional hip replacement by boldly doing away with a piece of the original design. Total Hip Replacement The socket on a conventional hip replacement was technically composed of two pieces: the acetabular cup and the plastic liner, the latter fitting snugly into the former. In a total hip replacement, the design simply eliminated the plastic liner, fitting the femoral head directly into the acetabular cup. You can see the difference in the image below. The top implant [Fig. 3] is a conventional hip replacement system, with an acetabular cup, a poly (plastic) liner, and a femoral head. The lower implant [Fig. 4] is a total hip replacement system, with only an acetabular cup and femoral head.
This design allowed the femoral head to be much larger, which made it more stable and less likely to dislocate. It also meant, however, that there was no cushion between the two hard surfaces of the acetabular cup and the femoral head. Many total hip replacement systems are extremely successful, and many surgeons prefer them over the two-piece conventional hip replacement systems, particularly for younger patients who are more active and more likely to dislocate their hip implant by testing the limits of its range of movement. However, the one-piece system made meticulous design engineering absolutely essential to avoid friction between the acetabular cup and the femoral head.
Which is where DePuy's ASR Acetabular System went wrong.
|